

What do these have in common?

Since Everyone Can
Read, Encoding Text In
Neutral Sentences Is

Doubtfully Effective

U

00

~—

i
YU
0

‘JO

"
v/

d

Y

0
duoo
040
d

1

Stega

J
0
Y
d

0

go
nogra

Hiding in plane sight...

Kc Udonsi
Engineer |
Kc.Udonsi@td.com
4163072532

0 s ~' lIREHIES

a Technicues - *

/ Toels

1% Detection

Ox1

£V History
b

« Earliest known record was from 440 BC. Herodotus mentioned two (2) examples of steganography

« The Greeks commonly communicated over wax tablets. Cruel Xerses once wrote a message on the

tablet before applying the wax

« Ancient Chinese messengers swallowed wax coated silk tiny balls with messages written in the silk

« Special Inks that could be revealed under certain conditions like blue-light or heat.

« The use of Frequency Domains, Bit/Byte patterns, extended character set/encodings

- /

Things are not always what they seem; the first appearance
deceives many --Phaedrus

)Y

i, Usages

Finger-Printing

e \Watermarking Digital
documents

e Can mark each digital
copy with signature for
intended recipient

* Decode document for
signature after leak to
discover mole

e E.g FBI VS Reality Leigh
Winner 2017

Smuggling Data

* Embedding a file or
data into another file or
data of different MIME
type to bypass content
filters

e Can hide binary in Text
files using zero-width
encoding or LSB with
image hosts

e APT 32 a.k.a
Oceanlotus smuggled
backdoors using
steganography

e Using homoglyphic
characters to construct
seemingly trusted URL
domains

e Homoglyphic
characters are nearly
impossible to tell apart

e Detection usually
involves certificate
analysis

e E.g these are not the
same sites:
https://epic.com/ and
https://epic.com

Secret Messaging

e Security through
obscurity but can be
encrypted as well

* Group messaging using
zero-width chars to
chat with specific
recipient

e Memes/GIFs with
encoded data for
coolness points

e Fingerprinting
messages leaked from
chats

Things are not always what they seem; the first appearance
deceives many --Phaedrus

https://еріс.com/
https://epic.com/

Binary files may contain
caves; regions filled with
NULL bytes and not
interpreted by parsers.

A
Text Rost
\/

Things are not always what they seem; the first appearance
deceives many --Phaedrus

Minor changes in bits of media files
are usually not perceptible by human
eyes or ears. Example algorithms in
LSB

(

Leveraging encodings other than ASCII
such as UNICODE to (mis)represent
characters. Changes are also not easily
perceptible to the eyes. Example
techniques include homoglyphs and zero-
width characters

Ox4

& Technigues = Zere-Width Characters

/Zero-Width Characters:\ e Convert each character to be hidden into its binary representation
Q| Non-printing Unicode OQ
~ | characters such as zero- 1. “A” => 65 => 0x41 => “01000001”
width space (U+200B),
zero-width non-joiner /+ Convert to zero-width by iterating through the binary string, converting each)
\(U+200C) J 1 to zero-width space and each 0 to zero-width non-joiner. Delimit binary
Q3 strings with zero-width joiner.
-
_* “0100” => U+200CU+200BU+200CU+200C -
Decode Me!
[Insert block of hidden text into host text. J

Things are not always what they seem; the first appearance
deceives many --Phaedrus

#!/usr/bin/python3

hide(decoy: str, secret: str) -» str:

Embed secret as a zero-width string within decoy
split secret by spaces
secret = secret. O)

lookup = {}
lookup["1"] "\u200b"
lookup["0"] "\u200c"'
split each word into binary repr of its characters and convert binary repr to zero-wdith characters
zwsecret=[]
word secret:
get the letter list
letterlist = list(word)
convert the letters from ASCII to binary
binletterlist = map(letter: format(ord(letter), 'b'). (8), letterlist)
convert the letters in binary to zero-width letterlist
zwletterlist = map(binletter: "". ([lookup[c] binletter]), binletterlist)
re-assemble the word as zero-width
zwword = "\u200d". (zwletterlist)
zwsecret += [zwword]

"{decoy}{zws}". (decoy=decoy, zws="\uFEFF". (zwsecret))

#1/usr/bin/python3

unhide(decoy_with_secret: str) -> str:

Reveal the secret within a text

Ignore all characters but the ones in our encoding
secret = "", (L "' C ["\u200b', '"\u200c', '\u200d', '\uFEFF'] decoy_with_secret])

split by non-breaking space
zerowidthwordlist = secret. ("\uFEFF")
lookup = {}

lookup['\u200b'] = "1"

lookup['\u200c'] = "0O"

split each word into binary repr of its characters and convert binary repr to char
sentence=""

zwword zerowidthwordlist:

get the letter list

zwletterlist = zwword. ('\u200d') # [01000001, 01010111] but as zero-width

conver the letters from zero-width to ASCII and re-concatenate

binletterlist = map(zwletter: "", ([lookup[zw] ZW zwletter]), zwletterlist) # [01000001,
01010111]

asciiword = "". (QUET1¢ bin: chr(int(bin, 2)) (bin == "") "', binletterlist))

sentence = sentence + " " + asciiword

sentence. @)

0

aﬁ

ﬁhe simplest form of \
media steganography
whereby the LSB of
image bytes are replaced
with the bits of the

@essage to be hidden J

Technigues = Least Signiticant Bit

a3 Example media host is a 24-bit image
« 10001010 01011010 011100160
01010001 10100001 01011101
00010100 00100011 11100011
* Example number to hide is 255. In binary string

N 255 => 11111111

~

.

KOutput
« 10001011 01011011 01110011
01010001 10100001 01011101
00010101 00100011 11100011

N

Things are not always what they seem; the first appearance
deceives many --Phaedrus

#l' /usr/bin/python3
PIL Image

encode(rgb: tuple, data: list) -> tuple:
oldrgbasbin = list(map(code: format(code, "b"). (8), rgbh))
i range(len(oldrgbasbin)):
modify the LSB of every byte
oldrgbasbin[i] = oldrgbasbin[i][:-1] + (datal[i] i < len(data) oldrgbasbin[i]l[-11)
tuple(map(bin: int(bin, 2), oldrgbasbin))

hide(filename: str, message: str) -> bool:
img = Image. (filename)
add a MARKER so we know when to stop looking
binary = "{}0000111100001110°" . "', (format(ord(c), "'b'). message))
img. ("RGBA"'") :
forcefully make it Red, Green, Blue, Alpha
img = img. ("RGBA")
get all the pixels
pixels = img. (@]

newpixels = []
digit = 0O
temp = "°
pixel pixels:
(digit < len(binary)):
r,g,b= encode((pixel[0],pixel[1].,pixel[2]).binary[digit:digit+3])
give the new pixel Alpha of 255 and add to our new image
newpixels. ((r,g,b,255))
digit += 3

newpixels. (pixel)
(newpixels)
(filename, "PNG")

#! /usr/bin/python3
PIL Image

decode(rgb: tuple) -> tuple:
R (map(code: format(code, 'b')[-11, rgb))

binarytoascii(binary: str) -> str:
R ([chr{(int(binary[i:8+1],2)) i range(0, len(binary), 8)]1)

unhide(filename: str) -> tuple:
img = Image. (filename)

binary =

img. ("RGBA"):
img = img. ("RGBA ")
pixels = 1img.)
pixel pixels:
extract = decode((pixel[0].,pixel[1].,pixel[2]))
binary = binary + extract
stop as soon as we recognize our MARKER
('0000111100001110" binarvy):
, binarytoascii(binary)
we didn't find MARKER but we try anyway
, binarytoascii(binary)

"o

0)(&

A Tools

QO

ﬂ StegHide (WAV, BMP)

+ Steganos
7 Invisible Secrets

7 https://330k.github.io/misc tools/unicode steganography.html - Zero-Width Characters

7 https://stylesuxx.github.io/steganography/

! Build Your Own Tools

~

/

Things are not always what they seem; the first appearance
deceives many --Phaedrus

https://330k.github.io/misc_tools/unicode_steganography.html
https://stylesuxx.github.io/steganography/

Ox7/

1% Detection

o Need to be aware steganography has been deployed on host or medium

Can be challenging to find embedded data especially if custom algorithms were deployed

Zero-width encoding may be detected by character count where present

Images may be brute-forced for detection by trying every common decoding scheme

~

Steganography may be used alongside cryptography making the detection/data retrieval even more challenging

/

Things are not always what they seem; the first appearance
deceives many --Phaedrus

'¢%01016 101éof
_10%%9 01
o lag

,
10
90

-
-
-
-
- 0 o
- ‘ 2,
h -\U ,(”.lﬂl
OO =y
- :
- - - -
- .
v -
. —
- O% O
“w U J
¥ 0 S - u
S ° S &
. - . B <
OO0 - o
- —_—0 =y
- ol O
— —— O
» e O~r—
. o O —— -
-) - - -
- -
- o o= . -
- OO0 OO = -
Ny - -
i o, = = =
- - -0 <
[ro— - -
- - OO o
- - - o
R = -
6 o ann 4
- R
- o -
- - h
g ™ S
o O
-l o000 —
Ed -y =7 e
‘ 0\4014 -y
} OO0 O
- <
—y O~
OO\\ po
- o o .
- ..1\0.\\‘ o
OO
U\‘ﬂU\l
= o
y OO
, 4 01.
o C
-

References
https://www.slideshare.net/UttamJain/steganography-14902856
https://publications.computer.org/computer-magazine/2018/11/15/how-
steganography-works/
https://medium.com/@umpox/be-careful-what-you-copy-invisibly-inserting-
usernames-into-text-with-zero-width-characters-18b4e6f17b66
https://blog.fastforwardlabs.com/2017/06/23/fingerprinting-documents-with-
steganography.html
http://csis.pace.edu/~ctappert/srd2005/d1.pdf
https://www.ptiglobal.com/2018/04/26/the-beauty-of-unicode-zero-width-
characters/

https://www.slideshare.net/UttamJain/steganography-14902856
https://publications.computer.org/computer-magazine/2018/11/15/how-steganography-works/
https://medium.com/@umpox/be-careful-what-you-copy-invisibly-inserting-usernames-into-text-with-zero-width-characters-18b4e6f17b66
https://blog.fastforwardlabs.com/2017/06/23/fingerprinting-documents-with-steganography.html
http://csis.pace.edu/~ctappert/srd2005/d1.pdf
https://www.ptiglobal.com/2018/04/26/the-beauty-of-unicode-zero-width-characters/

