
Web Security

Kc Udonsi

The Big Picture

The web architecture

Server SideClient Side

Web Server DatabaseWeb Browser

Securing the web architecture means securing ...
• The network

• The DNS (Domain Name System)

• The web server operating system

• The web server application (Apache for instance)

• The database application (Oracle for instance)

• The web user

• The web application Our focus here!

Challenges of Web Security - TLDR;

• All user input is untrusted

Challenges of Web Security
• Security across all layers of technology

• Very expressive (markup) languages

• Weakly verifiable state variables e.g cookies

• Loosely defined protocols and schemes

• URL parsing complexities

• Weakly verifiable content types e.g Polyglot files

• Use of middleware, routing, caches, proxies etc

Client Side

Mitigating Client Side Threats

• Malicious URL detection / navigation
warning

• Same Origin Policy

• Content Security Policies

• Privilege Separation

Malicious URL detection / Navigation warning
• Heuristics or Blacklist to prevent

navigation

• Navigation awareness

• Certificate validation

• HTTS Strict Transport Security
Enforcement

• HTTPS Everywhere

• Disable Javascript

Same-Origin Policy

• Same-Origin Policy (SOP) restricts how resources loaded
from a domain may interact with resources from another
domain

• Domain: (Scheme, host, port) tuple

• http://utsc.utoronto.ca:80 =/= https://
utsc.utoronto.ca:443

• E.g Malicious JS in one domain cannot access resources of
other sites the user is visiting

Same-Origin Policy - CORS

• Very strict - often relaxed with Cross Origin Resource
Sharing (CORS)

• Additional HTTP headers that specify permitted/trusted
origins and access control e.g Access-Control-Allow-
Origin

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Content Security Policy (CSP)

• Intended to mitigate XSS and other injection attacks

• Server returns Content-Security-Policy HTTP header or
<meta> tag

• Controls what resources can be loaded, how they must be
loaded and what can be executed.

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP

All content must come from origin, can include images from https origins, no inline
scripts, no nested contexts like iframes are permitted

Privilege Separation

• Intended to impact of vulnerabilities exploited

• Divide client application into modules were each is limited
to specific privileges required

• Helps to fine tune security controls and enforce
boundaries

• E.g Admin area, authenticated area, guest/anonymous area
etc

Server Side

Mitigating Server Side Threats

• Securing Authentication,
Sessions and Access control

• Safe-handling of input data
across boundaries

• Errors and Exception
management

• Logging and alerting

• Web Application Firewalls

Securing Authentication, Sessions and Access

• Authentication: account creation/recovery/password
change/credential validation

• Safe authentication error reporting

• Safe recovery and password change

• Avoid password requirements that weaken security

• Support for Multi-Factor-Auth

https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html

Securing Authentication, Sessions and Access Cont.

• Sessions: Managing user activities across application and
devices

• Set of data structures tracking user’s interaction with
application server-side

• Unique unforgeable secret sent automatically after
receipt back to server by client for identification

• May employ cryptography for enhanced security

• May be stored in Cookies or browser local storage
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html

Securing Authentication, Sessions and Access Cont.

• Access Control: Fine-grained logic to determine R/W
permissions per user or object.

• Determines if a user is authorized to perform an action

• Often implemented as roles

• Avoid assumptions as to how users might interact with the
application

https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html

Safe-handling input data across boundaries

• Stored procedures, parameterized queries for SQL
Injection

• Validation at each boundary / input point

• Whitelist/blacklist

• Sanitization

• Challenges of expressive languages on the web

Snippets of Doom: An Exercise

https://github.com/snoopysecurity/Vulnerable-Code-Snippets

Errors and Exception management

• Avoid overly verbose external errors. Use uninformative
messages publicly

• Log sanitized exceptions and errors

• Handle errors gracefully

• Poor handling may inform attacker of application internals
even without displaying content

Logging and Alerting

• Audit logs are valuable for intrusion investigation

• Inform on application or attacker behaviour during / post
breach

• E.g Authentication audits, critical transactions, successful
attack mitigation

• Can be enabled on application and all intermediaries

• Rules or alerts triggers to inform administrators on
anomalous behaviour

Web Application Firewalls

• Internal or external component performing intrusion
prevention or detection in the capacity of a reverse-proxy

• Often leverages payload signatures or customized rules or
policies for detection

• Often parses HTTP requests and response therefore
could also be vulnerable to bypasses

• May protect against CSRF, XSS, SQLi etc

Good Code Security Hygiene

• Dev Sec Ops

• Web Application threat modelling and evaluation

• External assessments e.g Vulnerability Reward Programs

• Continuous education and awareness

• Defense-in-Depth; layered security to localize and mitigate
threat impact

• Safe logging hygiene

Resources

• https://developer.mozilla.org/en-US/docs/Web/HTTP

• https://portswigger.net/web-security/cors

• https://portswigger.net/research/bypassing-csp-with-policy-injection

• https://portswigger.net/research/bypassing-csp-using-polyglot-jpegs

• https://portswigger.net/research/exploiting-cors-misconfigurations-for-
bitcoins-and-bounties

• See corresponding Resource section on course website

https://developer.mozilla.org/en-US/docs/Web/HTTP
https://portswigger.net/web-security/cors
https://portswigger.net/research/bypassing-csp-with-policy-injection
https://portswigger.net/research/bypassing-csp-using-polyglot-jpegs
https://portswigger.net/research/exploiting-cors-misconfigurations-for-bitcoins-and-bounties
https://portswigger.net/research/exploiting-cors-misconfigurations-for-bitcoins-and-bounties

