
Web Insecurity

Kc Udonsi

1991
Sir Tim Berners-Lee

2014

Collaboration

Customer Resources
Management

Accounting and Billing

Content Management

E-Learning

E-Health

Publishing

Web Portals

Social Networks

How many of us have ...
• A locally managed web-site

• Designed or built a web application

• Built a web application featuring:

• Authentication

• Authorization

• Multiple backend components / modules

• Data input & upload

Web application insecurity …

The Big Picture

The web architecture

Server SideClient Side

Web Server DatabaseWeb Browser

Securing the web architecture means securing ...
• The network

• The DNS (Domain Name System)

• The web server operating system

• The web server application (Apache for instance)

• The database application (Oracle for instance)

• The web user

• The web application Our focus here!

What is a web application?

+ program running
on the server

program running
on the browser

Hyper Text Transfer Protocol

The HTTP protocol

Stateless application layer protocol for requesting/receiving data on
the Web

• Standard TCP protocol on port 80 (by default)

• URI/URL specifies what resource is being accessed

• Different request methods

• Evolution: … HTTP/1.1, HTTP/2.0, HTTP/3.0

• Clients are also called “User-agents”

https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_HTTP

The HTTP protocol: Requests

• https://developer.mozilla.org/en-US/docs/Web/HTTP/
Messages#http_requests

https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages#http_requests
https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages#http_requests

The HTTP protocol: Response

• https://developer.mozilla.org/en-US/docs/Web/HTTP/
Messages#http_responses

https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages#http_responses
https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages#http_responses

Stateless …

• Authentication and Authorization managed via session id
between the browser and the web application

• This session id should be unique and unforgeable

• Stored in the cookie

• The session id is also stored and validated on the server

The big picture

Web ServerWeb Browser

HTTP request

HTTP response
HTTP request

HTTP response

Cookie : key/value pairs
stored in the requests

The user can create, modify, delete the session ID in the cookie

Session : key/value pairs
stored on the server

But cannot access the key/value pairs stored on the server

Insufficient Transport Layer Protection

a.k.a the need for HTTPs

How to steal user’s credentials

Do you trust the network?

๏ Threat 1 : an attacker can eavesdrop messages sent back and forth

interesting!

Do you really trust the network?

๏ Threat 2 : an attacker can tamper with messages sent back and
forth

I am example.com!

example.com

Confidentiality and Integrity

๏ Threat 1 : an attacker can eavesdrop messages sent back and
forth
Confidentiality: how do exchange information secretly?

๏ Threat 2 : an attacker can tamper messages sent back and forth
Integrity: How do we exchange information reliably?

Why and when using HTTPS?

HTTPS = HTTP + TLS

➡ TLS provides
• confidentiality: end-to-end secure channel
• integrity: authentication handshake

➡ HTTPS protects any data send back and forth including:
• login and password
• session ID

✓ HTTPS everywhere
HTTPS must be used during the entire session

Be careful of mixed content

Mixed-content happens when:

1. an HTTPS page contains elements (ajax, js, image, video, css ...)
served with HTTP

2. an HTTPS page transfers control to another HTTP page within
the same domain

๏ authentication cookie will be sent over HTTP
๏ Modern browsers block (or warn of) mixed-content

Secure cookie flag

✓ The cookie will be sent over HTTPS exclusively

➡ Prevents authentication cookie from leaking in case of mixed-
content

Do/Don't with HTTPS

• Always use HTTPS exclusively (in production)

• Always have a valid and signed certificate (no self-signed cert)

• Always avoid using absolute URL (mixed-content)

• Always use secure cookie flag with authentication cookie

Limitation of HTTPS

password = 123456 password = 123456

E#%FY7*5EZ$#G

Stealing secrets from the client

• Social engineering - Phishing

• Keyloggers (keystroke logging)

• Data mining (emails, logs)

• Hack the client’s code

Stealing secrets from the server

• Hack the server

• Hack the server’s side code

Client Side

 Who is the client?
• An arbitrary application that understands the HTTP protocol

• A front-end app, another web app, a browser, telnet, curl etc.

• Optionally and weakly identifiable via the User-Agent HTTP
header

• Generally untrusted

• Faces some threats when parsing or rendering HTTP response
or arbitrary data

• Poses some threats in sending HTTP requests to a web server

Client side threats
• Confidentiality

• An attacker can read secrets intended only for the client

• Integrity

• An attacker can coerce the client into making unintended requests

• An attacker can modify/falsify data parsed or rendered by the
client

• Availability

• An attacker can “crash” the client

Common client side vulnerabilities

• Cross-site scripting (XSS)

• Cross-site request forgery

• Clickjacking

https://hackerone.com/reports/1542510
https://hackerone.com/reports/1497169

Cross-Site Scripting (XSS)

Cross-Site Scripting Attack (XSS attack)

name=CMU

“Hello CMU!”

“Hello <script language="javascript">alert(“XSS attack”);</script>!”

name=<script language="javascript">alert(“XSS attack”);</script>

XSS Attack = Javascript Code Injection

Problem

➡ An attacker can inject arbitrary javascript code
in the page that will be executed by the browser

๏ Inject illegitimate content in the page
(same as content spoofing)

๏ Perform illegitimate HTTP requests through Ajax
(same as a CSRF attack)

๏ Steal Session ID from the cookie
๏ Steal user’s login/password by modifying the page to

forge a perfect scam

comment = “<script> ...

* Notice that Youtube is not vulnerable to this attack

login=Alice&password=123456

GET /?videoid=527

<html ...

GET /?videoid=527

<html ...

The script contained in the comments
modifies the page to look like the login page!

Forging a perfect scam

It gets worse - XSS Worms

Spread on social networks

• Samy targeting MySpace (2005)

• JTV.worm targeting Justin.tv (2008)

• Twitter worm targeting Twitter (2010)

Variations on XSS attacks

• Reflected XSS
Malicious data sent to the backend are immediately sent back to
the frontend to be inserted into the DOM

• Stored XSS
Malicious data sent to the backend are stored in the database and
later-on sent back to the frontend to be inserted into the DOM

• DOM-based attack
Malicious data are manipulated in the frontend (javascript) and
inserted into the DOM

Server Side

 Who is the web server?

• Mostly trusted domain; sensitive operations must be
performed here

• Hosts resources and defines how they are accessed

• May interact with other back-end components to satisfy the
HTTP requests

• Faces some threats when parsing HTTP requests or arbitrary
data

• Maybe weakly and optionally identifiable from a banner

Server side threats
• Confidentiality

• An attacker can read secrets from the server

• Integrity

• An attacker can coerce the server into making unintended
requests or responses

• Availability

• An attacker can prevent the server from responding to
clients

Common server side vulnerabilities

• Broken Authentication

• Broken Access Control

• Server Side Request Forgery

• XML External Entities Injection

• SQL Injection

• Command Injection

https://hackerone.com/reports/206591
https://hackerone.com/reports/1406938
https://hackerone.com/reports/500515

(No)SQL Injection

Problem

➡ An attacker can inject SQL/NoSQL code

๏ Retrieve, add, modify, delete information

๏ Bypass authentication

Checking password

name=Alice&pwd=pass4alice

/signin/
signin.html

Access Granted!

Bypassing password check

db.run("SELECT * FROM users  
WHERE USERNAME = '" + username + "'  
 AND PASSWORD = '" + password + "'"

username: alice  
password: pass4alice

blah' OR '1'='1

NoSQL Injection

db.find({ username: username,  
 password: password });

username: alice  
password: pass4alice

{gt: ""}

Conclusion

Server SideClient Side

Web Server DatabaseWeb Browser

You have absolutely no control
on the client

Resources
• Web Security Academy & Burp Suite

• Sequel to OG “The Web Application Hacker’s Handbook”

• https://portswigger.net/web-security/learning-path

• https://portswigger.net/burp/documentation/desktop/tutorials?
utm_source=burp_suite_community&utm_medium=learn_tab&utm_campaign=tutorials

• Hacker101 by HackerOne

• https://www.hacker101.com/videos

• https://ctf.hacker101.com/

• Damn Vulnerable Web Application

• https://www.kali.org/tools/dvwa/

• https://github.com/digininja/DVWA

• Damn Vulnerable Web Sockets

• https://owasp.org/www-project-damn-vulnerable-web-sockets/

• More in this week’s reading section

https://portswigger.net/web-security/web-application-hackers-handbook
https://www.oreilly.com/library/view/the-web-application/9781118026472/
https://portswigger.net/web-security/learning-path
https://portswigger.net/burp/documentation/desktop/tutorials?utm_source=burp_suite_community&utm_medium=learn_tab&utm_campaign=tutorials
https://portswigger.net/burp/documentation/desktop/tutorials?utm_source=burp_suite_community&utm_medium=learn_tab&utm_campaign=tutorials
https://www.hacker101.com/videos
https://ctf.hacker101.com/
https://www.kali.org/tools/dvwa/
https://github.com/digininja/DVWA
https://owasp.org/www-project-damn-vulnerable-web-sockets/

