
Operating Systems and Program
Security

Kc Udonsi

Application Security & Threat
Modelling

➡ Presence of security bugs “Vulnerabilities”

➡ Unauthorized modification e.g Backdoors

➡ Supply chain bugs - Vulnerabilities in dependencies and/or
tooling, partners

Common Threats Against Software

➡ Fundamental oversights in software design. Designed to do
the wrong thing a.k.a Design Flaws

➡ Implementation flaws/bugs relevant to security a.k.a Technical
Flaws

➡ Faulty inter-operation with executing environment a.k.a
Operational Flaws

๏ Arbitrarily trusting input data, misplaced trust

Why do Vulnerabilities exist ?

➡ Description of system

➡ Potential threats to the system (threats against CIA)

➡ Actions that can be taken to mitigate each threat

➡ Validation of model

➡ Threat Modelling Manifesto: https://
www.threatmodelingmanifesto.org/

➡ Think about “abuse cases” and what can be done to mitigate
those

Threat Modelling

https://www.threatmodelingmanifesto.org/
https://www.threatmodelingmanifesto.org/
https://www.threatmodelingmanifesto.org/

➡ Familiarity with relevant vulnerability classes

➡ Modularity - separate modules for separate functionalities

➡ Sanitize, validate, restrict input data even between modules
or components (mutual suspicion)

➡ Be “fault tolerant” by having a consistent policy to handle
failure

➡ Use reputable, security conscious and well maintained
libraries

➡ Adopt good programming practices, be security aware

Secure Programming

➡ Manual, guided or automated audit and security testing

➡ Security test cases may validate threat mitigation strategies

➡ Internal or external auditors methodologically review code
for design, implementation or operational flaws

➡ Vulnerability Rewards Program, Bug Bounties etc

➡ Fuzz testing can be combined with manual audits to discover
vulnerable code paths

➡ Can be carried out at various stages of the SDLC

Software Security Assessment

➡ Description of subject

➡ Potential threats to the system

➡ Actions that can be taken to mitigate each threat

➡ Validation of model

➡ Continuous security testing throughout the SDLC “DevSec
Ops”

➡ Think about “abuse cases” and what can be done to mitigate
those

Secure Software Development Life
Cycle

Formal Methods of Verification

Mathematical description of the problem

Proof of correctness

Executable code 
or hardware design

Refinement  
steps

➡ Examples:

Hardware design (VHDL, Verilog)
✓ Used by semi-conductor companies such as Intel

Critical embedded software (B/Z, Lustre/Esterel)
✓ Urban Transportation  

(METEOR Metro Line 14 in Paris by Alstom)
✓ Rail transportation (Eurostar)
✓ Aeronautic (Airbus, Eurocopter, Dassault)
✓ Nuclear plants (Schneider Electric)

Formal Methods of Verification

Pros and cons of using formal methods

✓ Nothing better than a mathematical proof
➡ A code “proven safe” is safe

๏ Development is time and effort (and so money) consuming
➡ Should be motivated by the risk analysis

๏ Do not prevent from specification bugs
➡ Example of network protocols

Operating System Security
Exploit mitigation, Endpoint Detection and Response (EDRs), Security Policies

Exploit Mitigation

➡ Fortify Source Functions

➡ Stack Canaries

➡ Data Execution Prevention / Non-Executable Stack

➡ Address Space Layout Randomization (ASLR)

Exploit Mitigation Contd.

➡ Position Independent Executables

➡ Control Flow Guard

➡ Application sandboxing

➡ Non-exhaustive. Often implemented at OS or Compiler

Exploit Mitigation Contd.

 Fortify Source Functions

➡ GCC macro FORTIFY_SOURCE provides buffer overflow
checks for unsafe C libraries 
 
memcpy, mempcpy, memmove, memset, strcpy,
stpcpy, strncpy, strcat, strncat, sprintf,
vsprintf, snprintf, vsnprintf, gets

Checks are performed
• some at compile time (compiler warnings)
• other at run time (code dynamically added to binary)

Canaries
• The compiler modifies every function's prologue and epilogue regions to place

and check a value (a.k.a a canary) on the stack

• When a buffer overflows, the canary is overwritten. The programs detects it
before the function returns and an exception is raised

• Different types:
• random canaries
• xor canaries

• Disabling Canary protection on Linux 
$ gcc ... -fno-stack-protector

• Bypassing canary protection : Structured Exception Handling (SEH) exploit 
overwrite the existing exception handler structure in the stack to point to your
own code

DEP/NX - Non Executable Stack

• The program marks important structures in memory as non-executable

• The program generates an hardware-level exception if you try to
execute those memory regions

• This makes normal stack buffer overflows where you set eip to
esp+offset and immediately run your shellcode impossible

• Disabling NX protection on Linux 
$ gcc ...-z execstack

• Bypassing NX protection : Return-to-lib-c exploit 
return to a subroutine of the lib C that is already present in the process’
executable memory

ASLR - Address Space Layout Randomization

• The OS randomize the location (random offset) where the standard
libraries and other elements are stored in memory

• Harder for the attacker to guess the address of a lib-c subroutine

• Disabling ASLR protection on Linux 
$ sysctl kernel.randomize_va_space=0

• Bypassing ASLR protection : Brute-force attack to guess the ASLR offset

• Bypassing ASLR protection : Return-Oriented-Programming (ROP) exploit 
use instruction pieces of the existing program (called "gadgets") and
chain them together to weave the exploit

PIC/PIE - Position Independent Code/Executables

• Without PIC/PIE 
code is compiled with absolute addresses and must be
loaded at a specific location to function correctly

• With PIC/PIE 
code is compiled with relative addressing that are resolved
dynamically when executed by calling a function to obtain
the return value on stack

Confined execution environment - Sandbox

A sandbox is tightly-controlled set of resources for untrusted
programs to run in

➡ Sandboxing servers - virtual machines

➡ Sandboxing programs
• Chroot, Seccomp, AppArmor in Linux
• Sandbox in MacOS
• Application Guard Windows
• Windows Sandbox

➡ Sandboxing applets - Java and Flash in web browsers

Security Policies

➡ OSes strive for secure out-of-the-box

➡ Granular controls may be required to customize security
posture

➡ Often pushed down as configurations or profiles in
enterprise environment

➡ May include firewall settings, password strength requirements,
application installations, removal drive controls, suspicious site
access, file download policies etc.

Baselining System Security

Vulnerability Management

➡ Patches often need to be validated

➡ Risk-based discovery, prioritization and remediation

To Patch or Not to Patch …

Securing the Kernel

➡ Kernel Self-Protection (Linux)

➡ Kernel Patch Guard / Patch Protection (KPP) (Windows)

➡ Kernel Data Protection (Windows)

➡ System Coprocessor / Kernel Integrity Protection (MacOS)

➡ Pointer Authentication Codes (MacOS)

➡ Code integrity and signing

➡ Non-exhaustive. Often implemented at OS or hypervisor
level (Virtualization Based Security)

Kernel Patch and Exploit Mitigations

Endpoint Detection and Response

➡ Historic anti-virus - signature based detection

➡ Heuristics and behavioural based detection

➡ Implemented as an extension to the kernel often with user-
space components

➡ Passive or Active mode, event logging and streaming

➡ Often featuring a cloud component for incident investigation
and security overview

➡ Still software hence can be contain vulnerabilities

Endpoint Protection

➡ Mitre Attack Matrix

➡

Endpoint Protection

