
Operating Systems and 
Program (in)security

Kc Udonsi



An Amateurish Introduction To 
Operating System



Operating Systems - Components

๏ Process, Threads - Process; an instance of a running 
program, a containers for one or more threads. Thread; a unit 
of execution managed by a scheduler. Synchronization


๏ Memory Management - Process memory allocation, 
manipulation and privileges etc.


๏ File Management - Data storage, manipulation, privileges 
etc.

๏ Network Management - Connectivity with other 
networked nodes



Operating Systems - Components Contd.

๏ I/O Device Management - Hardware interface and 
abstraction


๏ User Management - Segregation of user w.r.t resources 
access and management


๏ Security Management - Access control management and 
enforcement


๏ Command Interpreter System - Terminal for human 
interface



Operating Systems - Architecture

Wikipedia

Learn CS

๏ Ring 0 - Kernel

๏ Ring 3 - Userspace

๏ Ring -X: False rings, e.g Ring -1 Hypervisor



Operating Systems - Program Memory

Memory, Vuln1001, 
ost2.fyi, 2022* Heap Memory Diagrams Conventions, 

Vuln1001, ost2.fyi, 2022*
Stack Memory Diagram Conventions, 

Vuln1001, ost2.fyi, 2022*

* https://p.ost2.fyi/courses/course-v1:OpenSecurityTraining2+Vulns1001_C-derived+2022_v1/about



Hypothesis

➡ Programs are run by an authenticated user (authentication)

➡ Resources are accessed through programs (authorization)

➡ Every access is checked by the system (complete mediation)

✓ Everything is “secured” as long as long as the system is well 
configured and the programs and users behave as expected

๏ But ...



Threats



What can go wrong?

How can the security be compromised?

๏ A component of the OS may be vulnerable

๏ A program can be vulnerable

๏ An adversarial component could be added to the OS or 
connected via hardware interface

๏ A program can have an undesirable and malicious behaviour



Vulnerable OS Components and 
Programs



➡ A vulnerability is a security weakness in program which may 
be exploitable to realize or enable a threat

➡ A program is said to be “vulnerable” if it contains any such 
weakness

➡ The Common Weakness Enumeration (CWE) database by 
Mitre attempts to catalogue these weaknesses: https://
cwe.mitre.org/

Vulnerabilities

https://cwe.mitre.org/
https://cwe.mitre.org/


➡ Fundamental oversights in software design. Designed to do 
the wrong thing a.k.a Design Flaws

➡ Implementation flaws/bugs relevant to security a.k.a Technical 
Flaws

➡ Faulty inter-operation with executing environment a.k.a 
Operational Flaws

๏ Arbitrarily trusting input data, misplaced trust

Why do Vulnerabilities exist ?



๏ Common Vulnerability Enumeration (CVE) 
Identification - A unique identifier for a disclosed 
vulnerability. E.g CVE-2022-40684. https://www.cvedetails.com

๏ Common Vulnerability Scoring System (CVSS) - 
Represents the severity of a vulnerability as a numerical 
score. Currently v3.1. E.g AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/
A:H/E:F/RL:U/RC:C = 9.6 https://www.first.org/cvss/ 

๏ Proof of Concept (PoC) - A benign program that 
demonstrates the potential impact of exploiting a 
vulnerability.

Vulnerability Terminology

BeyondTrust, 2022

https://www.cvedetails.com
https://www.first.org/cvss/


๏ Exploit - A weaponized (contains malicious payload) 
program that leverages a vulnerability to actualize a threat. 
Also weaponized PoC

๏ 0-day vulnerability* - A vulnerability actively exploited in-
the-wild before disclosed (0 days after disclosure) to the 
relevant software vendor. E.g CVE-2022-40684.

๏ N-day vulnerability* - A vulnerability actively exploited N 
days after public disclosure.

๏ Disclosure - The practice of reporting a vulnerability

Vulnerability Terminology Contd.

* - Definitions may differ in other sources. Sometimes, the ‘vulnerability’ is replaced with ‘exploit’



Vulnerability Terminology Contd.

Exhibit B - Exploit

Exhibit A - Proof of Concept



➡ Some common vulnerability classes and their common 
impact

๏ Stack/Heap Buffer Overflow - Arbitrary Code Execution, 
Denial of Service

๏ Integer Under-/Over- flow - Code Execution, Denial of 
Service, Information Disclosure


๏ Use After Free - Arbitrary Code Execution, Denial of 
Service, Information Disclosure

Vulnerability Classes (subset)



➡ Some common vulnerability classes and their common 
impact


๏ Use After Free - Arbitrary Code Execution, Denial of 
Service


๏ Time of Check Time of Use / Race Conditions - 
Elevation of Privilege, Denial of Service

๏ Out of Bounds Write/Read - Arbitrary Code Execution, 
Information Disclosure, Denial of Service

Vulnerability Classes (subset) Contd.



๏ How are vulnerabilities discovered?

➡ Source code auditing

➡ Fuzzing

➡ Variant analysis

➡ Program analysis (synthetic, static and dynamic)

Vulnerability Discovery and 
Disclosure



๏ How are vulnerabilities disclosed?

➡ Responsible or Co-ordinated Disclosure

➡ Full Disclosure

➡ Private Disclosure

Vulnerability Discovery and 
Disclosure Contd.



Buffer Overflows
Brief Case Study



Buffer Overflow Attacks

What is the idea?
➡ Injecting wrong data input in a way that it will be interpreted 

as instructions

How data can become instructions?
➡ Because the data and instructions are the same thing 

binary values in memory

When was it discovered for the first time?
➡ Understood as early as 1972, first severe attack in 1988



What you need to know

• understand C functions

• familiar with assembly code

• understand the runtime stack and data encoding 

• know how systems calls are performed

• Understand memory layout



Stack execution Allocate local buffer  
(126 bytes in the 
stack)

Copy argument into 
local buffer

void func(char *str){

char buf[126];

strcpy(buf,str);


} 

Stack Memory Diagram Conventions, Vuln1001, ost2.fyi, 2022



What if the buffer is overstuffed?

strcpy does not check whether the string 
at *str contains fewer than 126 characters ...

… if a string longer than 126 bytes is copied into buffer,  
it will overwrite adjacent stack locations



Injecting Code
Shellcode



Why are we still vulnerable to buffer overflows?

Why code written in assembly code or C are 
subject to buffer overflow attacks?
➡ Because C has primitives to manipulate the memory directly 

(pointers ect ...)
If other programming languages are “memory 
safe”, why are we not using them instead?
• Because C and assembly code are used when a program 

requires high performances (audio, graphics, calculus …)  
or when dealing with hardware directly (OS, drivers ….)



Malicious OS Components and 
Programs



➡ Err 404, See you next week ;)



Malicious Program vs. Vulnerable Program
The program has been designed to compromise the security 
of the operating system
➡ The user executes a malware

The program has not been designed to compromise the 
security of the operating system may can enable the 
➡ The user executes a legitimate program that may be coerced 

into executing a malicious payload. The program is potentially 
exploitable.

๏ Arbitrary Code Execution Vulnerability : a 
vulnerability that can be exploited to execute a malicious 
payload (code)



What is a secure system?



Correctness (Safety) vs Security

Safety
Satisfy specifications

“for reasonable inputs,  
get reasonable outputs”

Security
Resist attacks

“for unreasonable inputs,  
get reasonable outputs”

The attacker is an active entity



One say that such program/os is more vulnerable

Some are ... so ...

more deployed than others more targeted/audited by 
hackers/researchers

more complex than others multiple points of failure, larger 
attack surface

more open to third-party code 
than others

more “amateur” codes, 
permissive execution



How to compare OS and programs?

Source: Secunia “Half-year report 2010”



What Makes A Good Security Metric?�
[Johnathan Nightingale]

• Severity
• Some bugs are directly exploitable
• Others requires the user to “cooperate”

• Exposure Window
• How long are users exposed to the vulnerability?

• Complete Disclosure
• Do vendors always disclose vulnerabilities found internally?



Penetration Testing
Discovering and Exploiting Vulnerabilities



Vulnerability Assessment vs Penetration Testing

Vulnerability assessment 
➡ Identify and quantify the vulnerabilities of a system
http://www.sans.org/reading-room/whitepapers/basics/vulnerability-assessment-421

Penetration testing (a.k.a pentest)
➡ Authorized and deliberate attack of a system with the 

intention  
of finding security weaknesses

http://www.sans.org/reading-room/whitepapers/analyst/penetration-testing-assessing-security-attackers-34635

http://www.sans.org/reading-room/whitepapers/analyst/penetration-testing-assessing-security-attackers-34635


Stages and Tools

Reconnaissance Mapping and Fingerprinting 
e.g NMAP

Vulnerability 
Assessment

Vulnerability Scanner
e.g OpenVAS

Penetration Testing Exploit Framework 
e.g Metasploit



Nmap
Network Mapping  

and Host Fingerprinting



About Nmap
http://
nmap.org/

Created by 
Gordon Lyon in 
1997

Already 
installed on Kali 
Linux

GUI version 
called Zenmap 
(also on Kali 
Linux)



Using NMAP

• Host discovery (ping based)
$ nmap -sP 10.0.1.0-255


• OS detection
$ nmap -O 10.0.1.101


• Full TCP port scanning
$ nmap -p0-65535 10.0.1.101


• Version detection
$ nmap -sV 10.0.1.101


• Export a full scan to a file
$ nmap -O —sV -p0-65535 10.0.1.101 -oN target.nmap 



Other features

• UDP scan

• Stealth scan (to go through firewalls)

• Slow scan (to avoid detection)

• Scripting engine (to exploit vulnerabilities)



OpenVAS
Vulnerability Scanner



About OpenVAS
http://www.openvas.org/

Fork of Nessus (created in 1998)
Maintained by Greenbone Networks GMBH

Already installed on Kali Linux

Commercial alternatives : 
Nessus, Nexpose, Core Impact, Retina Network Security Scanner



Setting up OpenVAS (on Kali Linux)

1. Update* signature database 
$ openvas-setup


2. Start OpenVAS
$ openvas-start 

3. Change* admin password
$ openvasmd —create-user=admin

$ openvasmd —new-password=admin —user=admin


4. Open the web interface
https://localhost:9392


* already done in the kali vagrant box provided for hw2



Report



Metasploit
Exploit Framework



About Metasploit
http://
www.metaspl
oit.com/

Created by HD 
Moore in 2003
Acquired by 
Rapid7 in 2009

Already installed 
in Kali Linux

Commercial 
alternatives : 
Metasploit Pro, 
Core Impact



Setting up Metasploit (on Kali Linux)

1. update* exploit database
$ msfupdate


2. Start Postgresql and Metaploit services
$ service postgresql start

$ service metasploit start


3. Start Metasploit console
$ msfconsole



Metasploit Demo



Using Metasploit to exploit a vulnerability

Example : UnrealIRCD 3.2.8.1 Backdoor Command 
Execution 

msf > use exploit/unix/irc/unreal_ircd_3281_backdoor


msf > show options


msf > set RHOST 10.0.1.101


msf > exploit


Success!



Armitage (Metasploit GUI)

http://www.fastandeasyhacking.com/

Created by Raphael Mudge

Already installed in Kali Linux

Start Armitage
$ armitage



Using Armitage

1. Add host(s)

2. Scan

3. Find attacks

4. Exploit attacks



References
NMAP reference Guide
http://nmap.org/book/man.html

OpenVAS
https://www.digitalocean.com/community/tutorials/how-to-use-openvas-to-audit-the-security-of-remote-systems-on-ubuntu-12-04

Metasploit
http://www.offensive-security.com/metasploit-unleashed/Main_Page

Playgrounds
HackTheBox
https://www.hackthebox.com

VulnHub
https://www.vulnhub.com

Pentestit
https://lab.pentestit.ru

http://nmap.org/book/man.html
https://www.digitalocean.com/community/tutorials/how-to-use-openvas-to-audit-the-security-of-remote-systems-on-ubuntu-12-04
http://www.offensive-security.com/metasploit-unleashed/Main_Page
https://www.hackthebox.com
https://www.vulnhub.com
https://lab.pentestit.ru

