
CSCD58H3 Winter 2018

Tutorial: 003

Week: 4

Date: January 30th, 2018

Socket Programming in C and Python

What is a Socket

A socket is a standard communication point or interface on the same device or different
devices that connect an application to a network.

Families of Sockets

i. AF_INET:

IPv4 Internet Protocols; the fourth version of the Internet Protocol. IP uses 32 bit
addresses. In the format xxx.xxx.xxx.xxx where each xxx is a value between 0 and 255
inclusive. This family has only one protocol

ii. AF_INET6:

IPv6 Internet protocols. IP uses 128 bit addresses. In the format of eight groups of 2
bytes i.e yyxx:yyxx:yyxx:yyxx:yyxx:yyxx:yyxx:yyxx where each yyxx is a value
from 0000 to ffff in hexadecimal. This family has only one protocol

iii. AF_UNIX

Also known as AF_LOCAL. Used for efficiently communicatin within the same machine.
These can be unnamed, or bound to filesystem pathname that was created as a socket.

iv. AF_CAN, AF_IPX, AF_NETLINK, AF_X25, AF_AX25 etc.

Supporting amateur radios, Kernel UI device, IPX, bluetooth, etc

More information about family types can be found from socketman page.

AF_INET6 is the family of protocol created to replace IPv4 since the addressing offered is
very limited and millions of devices are getting connected to the internet. However, we will
be demonstrating socket program with IPv4 (AF_INET)

Types of Sockets

i. STREAM Sockets: SOCK_STREAM

One of the two most common socket types. Reliable, bidirectional data flow. Requires a
valid connection. An out‑of‑band data transmission mechanism may be supported.
The read(...) and write(...) or some variant e.g send(...) and recv(...) are typically
used with this type fo socket. Think phone calls. More information man 2 socket

https://linux.die.net/man/2/socket

ii. DATAGRAM Sockets: SOCK_DGRAM

One of the two most common socket types. Unreliable, unidirectional data flow. No
connection required. Packets; called datagrams, are usually received
using recvfrom(...) and sent using sendto(...). Think physical mail delivery. More
information man 2 socket

iii. RAW sockets: SOCK_RAW

Only available to super user. Provides access to internal network protocol and
interfaces. Usually useful if sending custom packets or building packets from scratch.
More information available man 7 raw

The Berkeley Sockets APIs

Low level C Networking APIs available on most *NIX distro and on Windows via Ws2_32.lib.
The Berkeley sockets API represents sockets as file descriptors.

socket(...): returns a file dscriptor to a socket given a specified socket family and
type.

bind(...): binds a socket to an IP and Port given the socket's fd, an IP and a port

connect(...): connects to a given host and port using a socket fd

listen(...): listens for a specified number of connections to a bound socket, port and
IP

accept(...) recieves connections to a bound socket, port and IP. Hangs until a
connection is receives

recv(...): read or recv from a socket fd

send(...): write or send to a socket fd

gethostbyaddr(...), gethostbyname(...), select(...)etc

More information about the behaviour of these function can be obtained from their man
pages (linked here).

Data structures

Most of the APIs listed above require some special structures in the C programming
language. In this section, we investigate some of these structures and their correct
initializations and usage. As there are two modes of IP addresses, namely IPv4: Using
standard 32 bit IPs and IPv6 for 128 bits, we focus on IPv4 (AF_INET)

struct in_addr

This struct represents the IP address and is defined in netinet/in.h

#include<netinet/in.h>
#include<arpa/inet.h>

https://linux.die.net/man/2/socket
https://linux.die.net/man/7/raw
https://linux.die.net/man/2/socket
https://linux.die.net/man/2/bind
https://linux.die.net/man/2/connect
https://linux.die.net/man/2/listen
https://linux.die.net/man/2/accept
https://linux.die.net/man/2/recv
https://linux.die.net/man/2/send
https://linux.die.net/man/3/gethostbyaddr
https://linux.die.net/man/3/gethostbyname
https://linux.die.net/man/2/select
http://pubs.opengroup.org/onlinepubs/000095399/basedefs/netinet/in.h.html

struct in_addr {
 unsigned long s_addr; // set with inet_aton()
};

The IP address (s_addr) is specified using the API inet_aton (ASCII to Network)
from arpa/inet.h which converts x.x.x.x IP format to Network‑byte order.

// declare struct sockaddr_in myaddr
...
// specify internet addr
// myaddr.sin_addr <- is of type struct in_addr
inet_aton("127.0.0.1", &myaddr.sin_addr);

struct sockaddr_in

This struct is usually casted to struct sockaddr which is an equivalent sized struct but
more generic. This allows different APIs to use different structs (same size) based on
the socket family

#include<netinet/in.h>
#include<arpa/inet.h>

struct sockaddr_in {
 short sin_family; // socket family
 unsigned short sin_port; // port
 struct in_addr sin_addr; // IP addr; see struct above
 char sin_zero[8]; // usually set to 0
};

struct sockaddr {
 sa_family_t sa_family; // socket family
 char sa_data[]; // generic data: maps to port, IP addr etc
 // typically variable length, large
 // enough to support any family
}

This struct represents the connection details i.e the family of IP address and port. It is
defined in netinet/in.h

The members sin_family and sin_port deserve special mention.

sin_family specifies the family of the socket type. We will investigate this more
when learning to create sockets.
sin_port corresponds to the port number the socket will be bound to. However, it
must be set in Network‑byte order like IP addresses. The API htons(...)(Host to

http://pubs.opengroup.org/onlinepubs/009696899/basedefs/arpa/inet.h.html
http://pubs.opengroup.org/onlinepubs/000095399/basedefs/netinet/in.h.html

network short) from arpa/inet.h performs this conversion.

// declare struct sockaddr_in myaddr
myaddr.sin_port = htons(8080);
...

Creating sockets in C and Python

We provide two language support, you can follow the explanation in the language of your
choice but keep in mind, you will be programming your assignments in C

C

int socket(int socket_family, int socket_type, int protocol);

RETURN TYPE int: This API returns a socket file descriptor on success and ‑1 on
failure. Must always check the return value is not ‑1.

int protocol: This parameter specifies the protocol to use with the family of
sockets. However, most families; or atleast the ones we are concerned with have
only one protocol. Hence, the value of this parameter is mostly always 0.

int socket_family and int socket_type correspond to the socket families and
types discussed earlier. e.g AF_INET and SOCK_STREAM. These macros are defined
in sys/socket.h

Example:

#include<sys/types.h>
#include<sys/socket.h>

...
// creating an IPv4 streaming socket
int socket_fd = socket(AF_INET, SOCK_STREAM, 0);
if (socket_fd == -1) {
 // handle error and quit gracefully

}

Python

socket.socket(family=AF_INET, type=SOCK_STREAM, proto=0, fileno=None)

Parameters correspond to the those explained above. By default,
the socket.socket() creates an IPv4 streaming socket.

Example:

http://pubs.opengroup.org/onlinepubs/009696899/basedefs/arpa/inet.h.html
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/sys_socket.h.html

import socket

creating an IPv4 streaming socket
sock_fd = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
if sock_fd == -1:
 # handle error and quit gracefully

...

The TCP Client‑Server Model for Socket Programming

A: accept(...) blocks until it receives a connection

B: TCP handshake, connection established

C: Client's request

D: Server processes Client's request

E: Server's response

C ‑> D ‑> E loops until client is done sending requests

F: Client closes connection to Server

Simple Server Programming

Using nc or custom simple client as client

C walkthrough

Python walkthrough

Communication with nc

Simple Client Programming

Using nc or custom simple server as server

C walkthrough

Python walkthrough

Communication with nc

References and Resources

0. man pages and the good ol' commandline :smile:

1. wikipedia

2. University of Glasgow: Network programming in C

https://linux.die.net/man/
https://en.wikipedia.org/wiki/Berkeley_sockets
https://csperkins.org/teaching/2010-2011/networked-systems/lab03.pdf

