
CSCD58H3 Winter 2018

Tutorial: 002

Week: 3

Date: January 23rd, 2018

Tools

1. WireShark:

Network traffic analysis and protocol reverse engineering

2. Telnet and nc:

Network swiss army knives. Can emulate various protocols and client and server models.
Use their man pages to learn more.

3. Traceroute:

Tracing packet path over a network at a given time. Use manpages to learn more.

Observing the HTTP protocol

The conversation as seen in Wireshark

0. Bring up wireshark and listen on the appropriate interface

i. Navigate to http://www.google.com in your browser

ii. After the page loads, stop the browsing

iii. Filter for HTTP protocol communication by using tcp.port == 80

iv. Follow TCP stream to view the entire communication

Custom Webclient using nc

We aim to achieve the same communication using nc as the web client

0. Open a connection to a HTTP connection to google's servers by running nc
www.google.com 80

i. The command hangs for input

ii. enter GET / HTTP/1.1 in the input and hit enter key twice. The reason is, HTTP protocol
strings are terminated by double newline (\r\n\r\n).

iii. Compare the server's response witht he response as seen in wireshark.

iv. Copy the request as seen in wireshark into a text file. Don't forget to add the double
newline. Confirm you receive the same response as in wireshark.

Observing the SMTP protocol

The conversation as seen in Wireshark

0. You'll require a native mail application. (Not a web browser)

i. Bring up wireshark and listen on the appropriate interface

ii. Attempt to send an email from a Gmail if you have an account.

iii. Filter for smtp protocol communication by using smtp as filter.

iv. Follow TCP stream to view the entire communication

Custom smtp client using telnet

We aim to achieve a similar communication using telnet as the SMTP web client.

0. Launch the telnet command with no arguments (if installed). You'll be greeted with
a telnet prompt.

i. In order to send a mail, we need a mail server. We will be using the U of T mail
server t.mx.utoronto.ca

telnet> o t.mx.utoronto.ca 25

compare the output in the terminal with the output in wireshark. The firstline in
wireshark, beginning with 220 ... confirms successful connection with the server.

Note that the window hangs waiting for input

ii. Say HELO to the server with the EHLO command

EHLO t.mx.utoronto.ca

The server responds (sometimes with a welcome message) and a list of available
commands.

Compare the output in the terminal with the output in wireshark. See any similarities?

iii. The STARTTLS command shown in wireshark indicates the communication is now via
encrypted channels (See wireshark). We will not be communicating using STARTTLS

iv. Sending an email (Perform while wireshark is listening to witness the communication
packets):

To send an email we specify the sender and receipient:

a. MAIL FROM: <sender email address here> <‑ can be spoofed. For the sake of
demonstration, the instructor has provided the
address fakeymcfakeface@mail.utoronto.ca

b. RCPT TO: <receiver email here>

c. DATA <‑ This indicates the start of your message body

d. SUBJECT: (Optional) Specifying the email subject

e. <email body goes here>

f. . <‑ A period indicating the end of the email

g. Hit enter

h. Be advised. Except proper masking proxies are in place, the email is not really
spoofed. The following image verifies the receiver is fully aware of the original
sender's origin

Tracing the packet path

Traceroute

A network debugging tools that attempts to trace the path by which packets take to arrive
at their destination. Nodes in the path are called hops. The tool discovers nodes in the path
by incrementing TTL on each iteration such that the packets have just expired when they
arrive a hop. The hop/node then sends back a packet to the tool saying the last received
packet had expired. The tool counts these responses.

Traceroute www.google.com

i. Using the command traceroute www.google.com

ii. Possible output

traceroute to www.google.com (172.217.1.164), 64 hops max
1 142.1.24.1 0.324ms 0.272ms 0.243ms
2 192.168.1.17 0.399ms 0.412ms 0.454ms
3 10.0.0.81 0.952ms 0.909ms 0.905ms
4 128.100.96.16 1.571ms 1.338ms 1.291ms
5 205.211.94.233 1.481ms 1.438ms 1.431ms
6 66.97.23.57 1.703ms 1.530ms 1.525ms
7 66.97.16.22 1.703ms 1.955ms 1.579ms
8 74.125.48.230 1.272ms 1.201ms 1.438ms
9 108.170.250.241 1.501ms 1.364ms 1.390ms
10 108.170.226.221 1.550ms 1.352ms 1.376ms
11 172.217.1.164 1.452ms 1.418ms 1.418ms

Each of the lines above indicate the IP that responded and the times taken to respond
(RTT)since the tool sends three packets to each node. So it takes 11 hops from iits-b473-
01.utsc-labs.utoronto.ca to www.google.com

ii. You can investigate the actual geolocation of those IPs by using:

#!/bin/bash

for i in $(traceroute $1 | grep -e ms | sed 's/\s\s*/ /g' | cut -d' ' -f3);
do
 echo;
 curl -s ipinfo.io/$i;
done

In the above script, we simply pass the ip addresses line by line to curl ipinfo.io/. A
geoip tool.

iii. The output from the script can be sent to less

sh script.sh www.google.com | less

