
Applied Symmetric Cryptography
Protocols, Attacks, Implementation Flaws

Kc Udonsi

Refresher

Security goals vs attacker's model

Let us consider confidentiality, integrity and availability

Interception
Modification
Fabrication
Interruption

Symmetric Key Encryption

E D

➡ The same key k is used for encryption E and decryption D

1. Dk(Ek(m))=m for every k, Ek is an injection with inverse Dk

2. Ek(m) is easy to compute (either polynomial or linear)

3. Dk(c) is easy to compute (either polynomial or linear)

4. c = Ek(m) finding m is hard without k (exponential)

Protocols

(pure) encryption ensures confidentiality ...

Ek(m) = tkS3bffBp...

K K

tkS3bffBpdJvr96+mpLIAp0=

Dk("tkS3bffBp...") = m

... but does not ensure integrity !

๏ Encrypting a message does not authenticate it

Ek(m) = tkS3bffBp...

K K

tkS3bffBp...

Dk("aOhe7kCC...") = m'

aOhe7kCC...

One more issue ...

๏ How does Alice and Bob agree on a symmetric key?

K ?

tkS3bffBp...

Ek(m) = tkS3bffBp...

Example

[request]debit=50

[response]950

Ensuring confidentiality with encryption

Ek("[request]debit=50")

Ek("[response]950")

E, D, K E, D, K

tkS3bffBpdJvr96+mpLIAp0=

tkS3b/LLuNVXloLpww==

Dk("tkS3bffBp...")

Dk("tkS3b/LLu...")

Ensuring integrity with an HMAC

Hk("[request]debit=50")

Hk("[response]950")

Hk("[response]950")

H, K H, K

[request]debit=50  
f89a73aa27f3ea6...

[response]950
ee5a49c19fc252f...

Hk("[request]debit=50")

Security mechanisms

Encryption MAC Authenticated
Encryption

Confidentiality

Integrity

Authenticated Encryption (2013)

Encrypt-and-MAC (E&M) AEk(m) = EK(m) || HK(m) SSH

MAC-then-Encrypt (MtE) AEk(m) = EK(m || HK(m)) SSL

Encrypt-then-MAC (EtM) AEk(m) = EK(m) || HK(EK(m)) AES-GCM

Alice an Bob share a key K

Ensuring confidentiality and integrity
with Authenticated Encryption

E, D, H, K
E, D, H, K

AEk("[request]debit=50")

AEk("[response]950")

3O354WxPYF...

15qcK3Xcdwd ...

ADk("3O354WxPYF...")

ADk("15qcK3Xcdwd...")

Replay attacks

Replay attack

{req}Kab

{req}Kab

{res'}Kab

{res}Kab

Counter replay attacks

Several solutions:
• use a nonce (random number)
• use sequence numbers
• use timestamps
• have fresh key for every transaction

(key distribution problem)

Defeat replay attack with a nonce
(not fully secured)

A

Replay attack on the response!

{req, NB}Kab

{res}Kab

{NB}Kab

Defeat replay attack with a double nonce

A

{req, NA, NB}Kab

{res, NA}Kab

{NB}Kab

The challenge of key exchange

How do we agree
on the ?

The big challenge with symmetric cryptosystems?

E D

Naive Key Management

A1, A2 … A5 want to talk
➡ Each pair needs a key : n (n-1) / 2 keys
๏ Keys must be exchanged physically using a secure channel

A1

A2

A3A4

A5

(Better) centralized solution

A1, A2 … A5 can talk to the KDC (Key Distribution Center)
➡ When Ai and Aj want to talk, the KDC can generate a new key and

distribute it to them

๏ We still have n keys to distribute somehow using a secure channel

๏ The KDC must be trusted

๏ The KDC is a single point of failure
➡ The is how Kerberos works

A1

A2

A3A4

A5

The Needham-Shroeder symmetric protocol
for key exchange

Assumptions
• 4 principals : Alice, Bob, Mallory, Key Distribution Server

• S shares a key with A, B and M respectively Kas, Kbs, Kms

• A, B, M and S talk to each other using the same protocol

Goals
When two parties want to engage in the communication, they want to

1. make sure that they talk to the right person (authentication)
2. establish a session key

The vulnerable version of the protocol (1978)

A, B, NA

{NA, Kab, B, {Kab, A}Kbs}Kas

{Kab, A}Kbs

{NB}Kab

{NB-1}Kab

Replay attack (1981)

{Kab, A}Kbs

{NB}Kab

{NB-1}Kab

Assuming Kab has been
compromised somehow,
it can be reused

The fix (1987)

A, B, NA, {A, NB'}Kbs

{NA, Kab, B, {Kab, A, NB'}Kbs}Kas

{Kab, A, NB'}Kbs

{NB-1}Kab

A

{NB}Kab

{A, NB'}Kbs

Limitations of using a key distribution centre

The key distribution server is a bootleneck and weak link

๏ The attacker could record the key exchange and the
encrypted session, if one day either Kas or Kbs is broken, the
attacker can decrypt the session

➡ Having a KDC does not offer "Perfect Forward Secrecy"

Can we avoid having a KDC ?

Could Alice and Bob could magically come up with a key
without exchanging it over the network?

➡ The magic is called Diffie-Hellman-Merkle Protocol

K = gab mod p = (ga mod p)b mod p = (gb mod p)a mod p

p,g p,g

a b

A = ga mod p B = gb mod p

K = Ba mod p K = Ab mod p

The Diffie-Hellman-Merkel key exchange protocol

The Diffie-Hellman-Merkel key exchange protocol

A, p, g

B

1. Generates public numbers p and g
such that g if co-prime to p-1

2. Generates a secret number a
3. Sends A = ga mod p to Bob

1. Generates a secret number b
2. Sends B = gb mod p back to Alice
3. Calculates the key K = Ab mod p

4. Calculates the key K = Ba mod p

Diffie-Hellman-Merkle in practice

• g is small (either 3, 5 or 7 and fixed in practice)
• p is at least 2048 bits (and fixed in practice)
• private keys a and b are 2048 bits as well
➡ So the public values A and B

and the master key k are 2048 bits
➡ Use k to derive an AES key using a Key Derivation Function

(usually HKDF - the HMAC-based Extract-and-Expand key derivation function)

A widely used key exchange protocol

Diffie-Hellman-Merkle is in many protocols
• SSH
• TLS (used by HTTPS)
• Signal (used by most messaging apps like Whatsapp)
• and so on . . .

✓ It is fast and requires two exchanges only
✓ Solves the problem of having a key distribution server
✓ Ensures Perfect Forward Secrecy

๏ But how to make sure Alice is talking to Bob and vice-versa?
Diffie-Hellman-Merkle alone does not ensure authentication

Implementation Flaws

MS Word and Excel 2003 used the same key to re-encrypt
documents after editing changes

WEP - Wired Equivalent Privacy

➡ A random number IV (24 bits only) transmitted in clear
between the clients and the base station

RC4_key = IV + SSID_password

๏ 50% chance the same IV will be used again after 5000 packets

