
Applied Asymmetric Cryptography
Protocols, Attacks, Implementation Flaws

Kc Udonsi

Refresher

Asymmetric encryption
a.k.a Public Key Cryptography

E D

private keypublic key

Asymmetric Keys - Functional Requirements

DKs(EKp(m)) = m and DKp(EKs(m)) = m for every pair (Kp, Ks)

✓ Generating a pair (Kp, Ks) is easy to compute (polynomial)

✓ Encryption is easy to compute (either polynomial or linear)

✓ Decryption is easy to compute (either polynomial or linear)

๏ Finding a matching key Ks for a given Kp is hard (exponential)

๏ Decryption without knowing the corresponding key is hard
(exponential)

Asymmetric encryption
a.k.a Public Key Cryptography

E D

private keypublic key

➡ The public key for encryption
➡ The private key for decryption

Asymmetric encryption for confidentiality

Bob encrypts a message m with Alice's public key KpA
➡ Nobody can decrypt m, except Alice with her private key KsA

✓ Confidentiality without the need to exchange a secret key

KsA, KpA KpA KpA

EKpa(m)

DKsa(EKpa(m)) = m

Asymmetric encryption: Digital Signature

E D

public keyprivate key

➡ The private key for encryption
➡ The public key for decryption

Asymmetric encryption for integrity

Alice encrypts a message m with her private key KsA
➡ Everybody can decrypt m using Alice's public key KpA

✓ Authentication with non-repudiation (a.k.a Digital Signature)

KsA, KpA KpA KpA

EKsa(m)

DKpa(EKsa(m)) = m

Digital Signature

Ksa Alice’s Secret Key Ksb
Kpa, Kpb public keys

➡ Use public cryptography to sign and verify

m || SIGKsa(m)

SIGKsa(m) = EKsa(H(m))

Non-repudation as a special case of integrity

MAC Digital Signature

Integrity

Non-repudiation

Digital Signatures and Confidentiality

Ksa Alice’s Secret Key Ksb
Kpa, Kpb public keys

1. Alice generates a symmetric session key k

2. Use both symmetric and asymmetric cryptography to
encrypt, sign and verify the message and the key

EKpb(k) || Ek(m || EKsa(H(m))

Goals

1. Establish a session key to exchange data while ensuring
Perfect Forward Secrecy
✓ Use the Diffie-Hellman key exchange protocol

2. Ensure one-way or mutual authentication
✓ Use asymmetric encryption

Protocols

The Needham-Schroeder
public-key protocol

for mutual authentication

Assumptions and Goals

Assumptions
• 4 principals : Alice, Bob, Mallory and a Public-Key Server
• Alice, Bob, Mallory and the Server have generated their own public/

private key pair
• Alice, Bob and Mallory know the Server's public key Kps

• A, B, M and S talk to each other using the same protocol

Goals
When two parties want to engage in the communication, they want to
make sure that they talk to the right person (authentication)

The vulnerable version (1978)

A, B

{Kpb, B}Kss

{NA, A}Kpb

{NA, NB}Kpa

{NB}Kpb

B, A

{Kpa, A}Kss

“Hi, Alice!”

Simplified (but still vulnerable) version (1978)

{NA, A}Kpb

{NA, NB}Kpa

{NB}Kpb

“Hi, Alice!”

Man-in-the-middle attack (Lowe’s 1995)

{NA, A}Kpm

“Hi, Alice!”

{NA, NB}Kpa

{NA, A}Kpb

{NB}Kpb{NB}Kpm

Lowe’s fix (1995)

{NA, A}Kpb

{NA, NB, B}Kpa

{NB}Kpb

“Hi, Alice!”

Not a perfect protocol yet

✓ Does authenticate Alice and bob
✓ Does prevent replay attacks
✓ Does ensure the authenticity of the public keys
๏ But the Public Key Server is a single point of failure

TLS - Transport Layer Security
a.k.a SSL - Secure Sockets Layer

✓ HTTPS = HTTP + TLS

➡ TLS - Transport Layer Security (a.k.a SSL) provides
• confidentiality : end-to-end secure channel
• integrity : one-way authentication handshake

This how HTTPS works

example.com

HTTPS request

HTTPS response

Who are you?

I am example.com

simplified and one-way authentication
 TLS 1.2 (2008)

NA

NB, DHB, CertB, sign(H(NA || NB || DHB))

DHA

Fin

simplified and one-way authentication
 TLS 1.3 (2018)

NA, ECDHA

NB, ECDHB, [CertB, sign(H(NA || NB || ECDHA || ECDHB || CertB))]K

TLS 1.3 is much better than TLS 1.2

✓ Only one round in the handshake (vs 2 with TLS 1.2)

✓ Faster (use of elliptic curves)

✓ Certificate is encrypted (better confidentiality)

✓ Protocol has been formally proven
(dos not prevent from implementation bugs)

Almost there . . .

✓ Does ensure the confidentiality of the communication
✓ Does authenticate Alice and bob
✓ Does prevent replay attacks
➡ But how to ensure the authenticity of the public keys

without using a Public Key Server ?

Trust Models

Two trust models

How to establish the authenticity of the binding between
someone and its public key ?

Decentralized trust model
➡ Web of Trust

Centralized trust model
➡ PKI - Public Key Infrastructure

Do you trust the GPG key ?

Alice should verify Bob’s public key fingerprint
• either by communicating with Bob over another channel
• or by trusting someone that already trusts Bob
➡ the web of trust

Alice Bob

I am Bob!

Pkm

The web of trust
Alice

Dan

ErinCarol

Bob

trust
i.e has_signed Pk

transitive trust

Do you trust the network ?

example.com

I am example.com!

The browser should verify the certificate
➡ PKI - Public Key Infrastructure

Generating and using (self-signed) certificates

Who are you?

I am example.com

I don’t know

Self-signed certificates
are not trusted by
your browser

Signed Certificate Certificate Authority (CA)

Who are you?

I am example.com

I trust so

The Chain of Trust Root CA

Intermediate
CA

Intermediate
CA

I trust
so ⇒ ⇒ ⇒

Your browser trusts many root CAs by default

Real attacks

Real attacks

Limitation of secure channels

