Introductory Cryptography Symmetric Encryption

Kc Udonsi

→ The same key k is used for encryption E and decryption D
1. D_k(E_k(m))=m for every k, E_k is an injection with inverse D_k
2. E_k(m) is easy to compute (either polynomial or linear)
3. D_k(c) is easy to compute (either polynomial or linear)
4. c = E_k(m) finding m is hard without k (exponential)

Types of Symmetric Key Algorithms/Ciphers

Stream cipher

Each bit is encrypted independently in a "stream"

RC4 - Rivest Cipher 4 (now deprecated) Salsa20

Block cipher

- Blocks of data are encrypted in rounds
 - Encryption standards

DES (and 3DES) - Data Encryption Standard (now deprecated) AES - Advanced Encryption Standard

Block cipher modes of operation

```
Random Number Generator
```

int getRandomNumber() return 4; // chosen by fair dice roll. // guaranteed to be random. }

True Random Number Generator

➡ No, because we want to be able to encrypt and decrypt

Pseudo-Random Generator

Stretch a a fixed-size <u>seed</u> to obtain an unbounded random sequence

Stream cipher

Can we use k as a seed?

$E_k(m) = m \oplus RNG(k)$

➡ Be careful of key reused attack !

Block Cipher

m $\stackrel{\text{n bits}}{\longleftarrow}$ $\stackrel{\text{n bits}}{\longleftarrow}$ $\stackrel{\text{c}}{\longleftarrow}$ $\stackrel{\text{c}}{\longleftarrow}$ $\stackrel{\text{c}}{\longleftarrow}$ $\stackrel{\text{n bits}}{\longleftarrow}$ $\stackrel{\text{c}}{\longleftarrow}$

- Combines confusion (substitution) and diffusion (permutation)
- Changing single bit in plaintext block or key results in changes to approximately half the ciphertext bits
- Completely obscure statistical properties of the original message
- A known-plaintext attack does not reveal the key

Ideal block cipher

DES - Data Encryption Standard

Block size	64 bits
Key Size	56 bits
Speed	~ 50 cycles per byte
Algorithm	Feistel Network

Timeline

- 1972 NBS call for proposals
- I974 IBM Lucifer proposal analyzed by DOD and enhanced by NSA
- 1976 adopted as standard
- 2004 NIST withdraws the standard

Security of DES -DES Challenges (brute force contests)

1998 Deep Crack, the EFF's DES cracking machine used 1,856 custom chips

- Speed : matter of days
- Cost : \$250,000

2006 COPACOBANA, the COst-optimized Parallel COdeBreaker used 120 FPGAs

- Speed : less than 24h
- Cost : \$10,000

3DES (Triple DES)

$3DES_{k1,k2,k3}(m) = E_{k3}(D_{k2}(E_{k1}(m)))$

- ➡ Uses three keys; some same or all distinct
- Effective key length (entropy) : 112 bits or 168 bits
- ✓ Very popular, used in PGP, TLS (SSL) ...
- But terribly slow

AES - Advanced Encryption Standard

Timeline

- 1996 NIST issues public call for proposal
- 1998 15 algorithms selected
- 2001 winners were announced

Rijndael by J. Daemen and V. Rijmen

Block size	128 bits	
Key Size	128, 192, 256 bits	
Speed	~18-20 cycles / byte	
Mathematical Foundation	Galois Fields	
Implementation	 Substitution-permutation network Basic operations : ⊕, + , shift Small code : 98k 	

Adopted by the NIST in December 2001

(pure) Encryption Modes a.k.a. how to encrypt long messages

ECB - Electronic Code Book

CBC - Cipher Block Chaining

CFB - Cipher Feedback

OFB - Output Feedback

CTR - Counter

ECB - Electronic Code Book

Each plaintext block is encrypted independently with the key

- ✓ Block can be encrypted in parallel
- The same block is encrypted to the same ciphertext

How bad is ECB mode with a large data?

Original image

Encrypted using ECB mode

Modes other than ECB result in pseudo-randomness

source: Wikimedia

💀 Simple Illustration of Zoom Encryption Failure

by Davi Ottenheimer on April 10, 2020

The Citizen Lab April 3rd, 2020 report broke the news on Zoom using weak encryption and gave this top-level finding:

66

Zoom <u>documentation</u> claims that the app uses "AES-256" encryption for meetings where possible. However, we find that in each Zoom meeting, a single AES-128 key is used in ECB mode by all participants to encrypt and decrypt audio and video. The use of ECB mode is not recommended because patterns present in the plaintext are preserved during encryption.

source: Security Boulevard

CBC - Cipher Block Chaining

Introduce some <u>randomness</u> using the previous ciphertext block

- ✓ Repeating plaintext blocks are not exposed in the ciphertext
- No parallelism
- ➡ The Initialization Vector should be known by the recipient

CTR - Counter

Introduce some <u>randomness</u> using a counter

- ✓ High entropy and parallelism
- Sensitive to key-reused attack

Key-reused attack on CTR

(+)

Stream Cipher vs Block Cipher

	Stream Cipher	Block Cipher
Approach	Encrypt one symbol of plaintext directly into a symbol of ciphertext	Encrypt a group of plaintext symbols as one block
Pro	Fast	High diffusion
Cons	Low diffusion Key reused attack	Slow

Stream cipher and block cipher are often used together

- Stream cipher for encrypting <u>large volume of data</u>
- Block cipher for encrypting <u>fresh pseudo-random seeds</u>

Latest trends

AES is now hardware accelerated (AES-NI native instruction)

AES is fast enough (~I.3 cycles per byte) to be used as the go-to cipher for any application

https://security.stackexchange.com/questions/22905/how-long-would-it-take-a-single-processor-withthe-aes-ni-instruction-set-to-bru

An issue ...

 $E_k(m) = tkS3bffBp...$

tkS3bffBp...

• How does Alice and Bob agree on a symmetric key?