Introductory Cryptography Message Digests

Kc Udonsi

### Message digests

Message digests are meant for creating fingerprints of messages

- <u>Un-keyed</u> message digest : hashes, checksum
- <u>Keyed</u> message digests : MACs



- m is a message of any length
- x is a message digest of a fixed length
- H is a lossy compression function
   necessarily there exists x, m<sub>1</sub> and m<sub>2</sub> | H(m<sub>1</sub>)
   = H(m<sub>2</sub>) = x

Computational complexity

• Given H and m, <u>computing x</u> is **easy** (polynomial or linear)

т — н —

► X

- Given H and x, <u>computing m</u> is **hard** (exponential)
- ➡ H is not invertible

# Preimage resistance and collision resistance



#### PR - Preimage Resistance (a.k.a One Way)

given H and x, hard to find m
 e.g. password storage

#### **2PR - Second Preimage Resistance (a.k.a Weak Collision Resistance)**

➡ given H, m and x, hard to find m' such that H(m) = H(m') = x e.g. virus identification

### **CR - Collision Resistance (a.k.a Strong Collision Resistance)**

➡ given H, hard to find m and m' such that H(m) = H(m') = x e.g. digital signatures

### $CR \rightarrow 2PR$ and $CR \rightarrow PR$

# Security of hash functions

## Brute-forcing a hash fun**tion H** → **X**

### **CR - Collision Resistance**

given H, hard to find m and m' such that H(m) = H(m')
x

Given a hash function H of n bits output

• Reaching all possibilities

2<sup>n</sup> cases

2n-1 cases

• On average, an attacker should try half of them

## Birthday Paradox

"There are 50% chance that 2 people have the same birthday in a room of 23 people"

### **N-bits security**



Given a hash function H of n bits output,
 a collision can be found in around 2<sup>n/2</sup>
 evaluations

e.g SHA-256 is 128 bits security

# Broken hash functions beyond the birthday paradox

|       | Year | Collision                                                 |
|-------|------|-----------------------------------------------------------|
| MD5   | 2013 | 2 <sup>24</sup> evaluations (2 <sup>39</sup> with prefix) |
| SHA-1 | 2015 | 2 <sup>57</sup> evaluations                               |