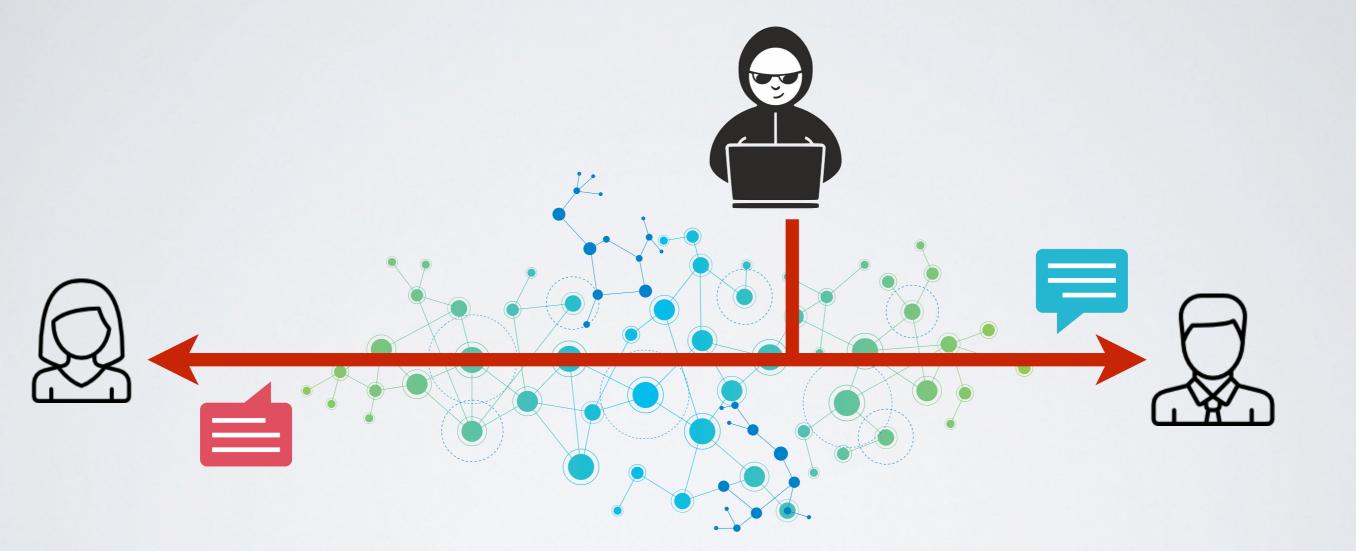
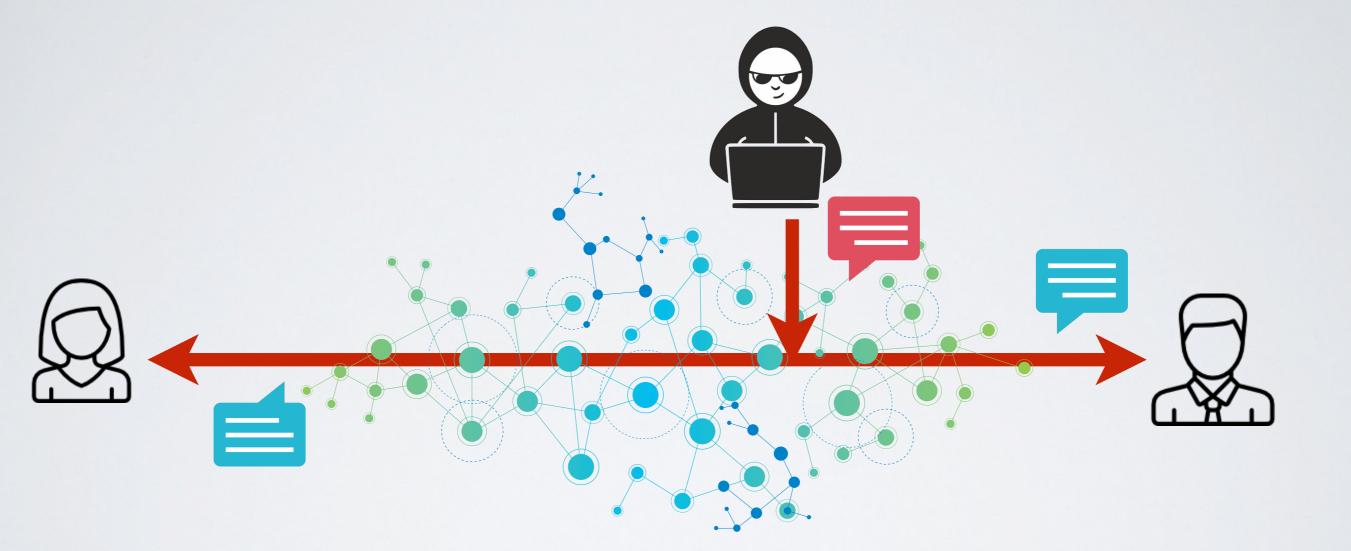

Introductory Cryptography Classical Cryptography

Kc Udonsi

Communication over an **insecure** medium



Threat I - Interception


• Interception : an attacker can <u>read</u> messages

Threat 2 - Modification

Modification : an attacker can modify messages

Threat 3 - Fabrication

• Fabrication : an attacker can inject messages

Threat 4 - Interruption

Interruption : an attacker can <u>block</u> messages

Confidentiality and Integrity of communications

Implement a virtual trusted channel over an insecure medium

Storage on an **insecure** medium

→ Threat I: Loss

An attacker can corrupt or destroy data at rest

➡ Threat 2: Disclosure

An attacker can disclose data at rest to other unauthorized parties

➡ Threat 3: Theft

An attacker can obtain and store data at an arbitrary location

Threat 4: Modification

An attacker can compromise the integrity of data at rest

Storage on an **insecure** medium

→ Threat I: Loss

Cryptography cannot be used to prevent loss. It may be used to yield loss. E.g ransomware

Threat 2 & 3: Disclosure & Theft Encrypted data at rest cannot be meaningfully disclosed or

utilized without decryption. E.g PGP Whole Disk Encryption

Threat 4: Modification

Cryptography can be used to verify the integrity of data at rest

Definitions of a cryptosystem

Plaintext

The message in its clear form (the original message).

Ciphertext

The message in its ciphered form (the encrypted message).

Encryption

Transform a plaintext into ciphertext.

Decryption

Transform a ciphertext into a plaintext

Cryptographic algorithm

The method to do encryption and decryption.

Cryptographic key

An input variable used by the algorithm for the transformation

N-bit security entropy (a.k.a. the key space) The number of bits necessary to <u>encode the number of possible</u> <u>keys</u> (could be different than the key length)

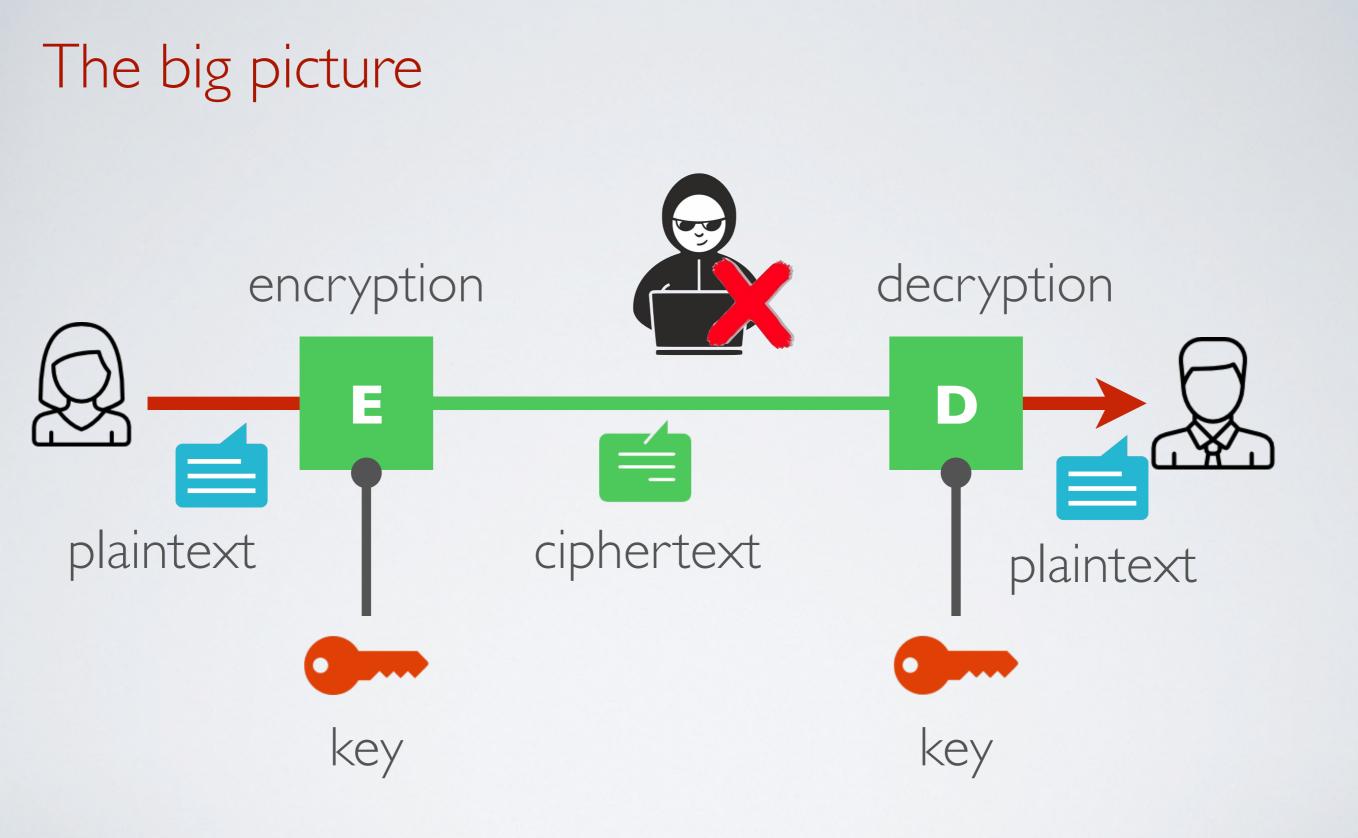
Monoalphabetic cipher

A specific letter in the plaintext is consistently substituted with another letter in the cipher text

Polyalphabetic Cipher

A specific letter in the plaintext may be substituted with different letters in the cipher text

Cryptography


The art and science of securing messages

Cryptanalysis

The art and science of breaking secured messages to reveal the hidden message

Cryptography

The art and science of secure messaging which encompasses cryptography and cryptanalysis

An early example...

Caesar Cipher - the oldest cryptosystem

A shift cipher – attributed to Julius Caesar (100-44 BC) MEET ME AFTER THE TOGA PARTY PHHW PH DIWHU WKH WRJD SDUWB

Shift the alphabet 23 places to the right and substitute letters a b c d e f g h i j k l m n o p q r s t u v w x y z D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

Representing data as numbers

Cryptographic algorithms are mathematical operations

 messages and keys must be represented as numbers for instance : ASCII encoding

Back to Caesar Cipher

Algorithm : shift the alphabet of a certain number of positions
Key : the number of positions to shift
Key space : 25 possible rotations (~ 5 bits security)
Encoding :
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Encrypting and decrypting one character is obtained as follows:

 $c = E(k,p) = (p + k) \mod 26$ $p = D(k,c) = (c - k) \mod 26$ Cryptanalysis Breaking the cipher

The Kerckhoffs' principle (1883)

"The enemy knows the system" - the security of a communication should not rely on the fact that the algorithms are secrets

A cryptosystem should be secure even if everything about the system, except the key, is public knowledge

No security by obscurity

Breaking the cipher - the attacker's model

- **Exhaustive Search** (a.k.a brute force) Try all possible n keys (in average it takes n/2 tries)
- Ciphertext only
 You know one or several <u>random ciphertexts</u>
- Known plaintext You know one or several pairs of <u>random plaintext</u> and their corresponding ciphertexts

Chosen plaintext

You know one or several pairs of chosen plaintext and their corresponding ciphertexts

Chosen ciphertext

You know one or several pairs of plaintext and their corresponding chosen ciphertexts

A good crypto system resists all attacks

Breaking Caesar cipher

Exhaustive search	Yes
ciphertext only	Statistical Analysis
known plaintext	Look at the first letter and get the shift
chosen plaintext	Choose ''A'' and get the shift
chosen ciphertext	Choose ''A'' and get the shift

Evolution of cryptosystems

A brief history of cryptography

~ 2000 years ago	Substitution ciphers (a.k.a mono alphabetic ciphers)	
few centuries later	Transposition ciphers	
Renaissance	Polyalphabetic ciphers	
1844	Mechanization	
1976	Public key cryptography	

Substitution ciphers (a.k.a mono alphabetic ciphers)

➡ Improvement over Caesar cipher

Algorithm : allow an arbitrary permutation of the alphabet

Key : set of substitutions

Key space : 26! possible substitutions ($4 \times 10^{26} \sim 89$ bits)

a b c d e f g h i j k l m n o p q r s t u v w x y z D K V Q F I B J W P E S C X H T M Y A U O L R G Z N

if we wish to replace letters
WI RF RWAJ UH YFTSDVF SFUUFYA

Breaking substitution ciphers

Exhaustive search	Doable with a computer	
ciphertext only	Statistical analysis	
known plaintext	Match letters together	
chosen plaintext	Choose ABCDE and match letters	
chosen ciphertext	Choose ABCDE and match letters	

Polyalphabetic ciphers (a.k.a Renaissance Cipher)

➡ Vigenere cipher

Algorithm : combine the message and the key

Key: a word

Key space : the length of the word

wearediscoveredsaveyourself

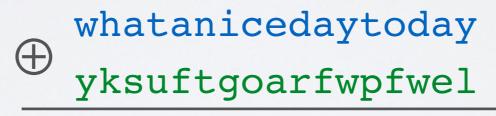
+ deceptivedeceptivedeceptive (mod 26)

ZICVTWQNGRZGVTWAVZHCQYGLMGJ

Advantage : Encryption of a letter is context dependent

Breaking Polyalphabetic Ciphers

exhaustive search	Small key length only	
ciphertext only	Statistical analysis for small key length and significant amount of ciphertext	
known plaintext	Subtract plaintext from ciphertext	
chosen plaintext	Choose AAAAA and match letters	
chosen ciphertext	Choose AAAAA and match letters	


OTP - One Time Pad

➡ Improvement over Vigenere cipher

Algorithm : combine the message and the key

Key : an infinite random string

Key space : infinite

ZZZJUCLUDTUNNWGQS

Advantage : this is the perfect cipher !

Disadvantage : hard to use in practice, how to transmit the key ?

XOR Cipher (a.k.a Vernham Cipher) a modern version of Vigenere

Use \oplus to combine the message and the key $E_k(m) = k \oplus m$ $D_k(c) = k \oplus c$ $D_k(E_k(m)) = k \oplus (k \oplus m) = m$

Problem : known-plaintext attack so $k = (k \oplus m) \oplus m$

 $x \oplus x = 0$ $x \oplus 0 = x$

Mauborgne Cipher - a modern version of OTP

Use a random stream as encryption key

➡ Defeats the know-plaintext attack

Problem: Key-reused attack (a.k.a two-time pad)

$$C_{1} = k \oplus m_{1}$$

$$C_{2} = k \oplus m_{2}$$
so $C_{1} \oplus C_{2} = (k \oplus m_{1}) \oplus (k \oplus m_{2})$

$$= (m_{1} \oplus m_{2}) \oplus 0$$

$$= (m_{1} \oplus m_{2})$$

$\mathbf{x} \oplus$	X	=	0
$\mathbf{x} \oplus$	0	=	X

The impossibility of breaking OTP

The ciphertext bears no statistical relationship to the plaintext

➡ No statistical analysis

For any plaintext and ciphertext, there exists a key mapping one to the other, and all keys are equally probable

A ciphertext can be decrypted to any plaintext of the same length

The seeds of modern cryptography

Diffusion

Mix-up symbols Transposition Cipher

2. Confusion

Replace a symbol with another Polyaphabetic Cipher

3. Randomization

Repeated encryption of the same text are different OTP

Types of Cryptographic Algorithms

One way algorithms

Also known as message digests. No keys involved. Encryption cannot be reversed.

Symmetric Key algorithms

The keys used for encryption and decryption are the same OR two-way mathematically related (can be derived from the other reliably)

Public Key algorithms

Also known as asymmetric algorithms. The keys used for encryption and decryption are different but one-way mathematically related.